Default primitive polynomials

The table below lists the default primitive polynomials of degree $k$ over $\mathbb{F}_2$ for $k \in [1 : 24]$. The polynomial $p(X)$ is represented as a binary number, where the leftmost bit stands for the highest degree term. For example, the polynomial $p(X) = X^3 + X + 1$ is represented as 0b1011.

Source: LC04, Table 2.7, p.42.

Degree $k$ Primitive polynomial $p(X)$ Degree $k$ Primitive polynomial $p(X)$
$1$ 0b11 $13$ 0b10000000011011
$2$ 0b111 $14$ 0b100010001000011
$3$ 0b1011 $15$ 0b1000000000000011
$4$ 0b10011 $16$ 0b11010000000010001
$5$ 0b100101 $17$ 0b100000000000001001
$6$ 0b1000011 $18$ 0b1000000000010000001
$7$ 0b10001001 $19$ 0b10000000000000100111
$8$ 0b100011101 $20$ 0b100000000000000001001
$9$ 0b1000010001 $21$ 0b1000000000000000000101
$10$ 0b10000001001 $22$ 0b10000000000000000000011
$11$ 0b100000000101 $23$ 0b100000000000000000100001
$12$ 0b1000001010011 $24$ 0b1000000000000000010000111