Skip to content

komm.SimplexCode

Simplex (maximum-length) code. For a given parameter $\kappa \geq 2$, it is the linear block code with generator matrix whose columns are all the $2^\kappa - 1$ nonzero binary $\kappa$-tuples. The simplex code (also known as maximum-length code) has the following parameters:

  • Length: $n = 2^\kappa - 1$
  • Dimension: $k = \kappa$
  • Redundancy: $m = 2^\kappa - \kappa - 1$
  • Minimum distance: $d = 2^{\kappa - 1}$

In its extended version, the simplex code has the following parameters:

  • Length: $n = 2^\kappa$
  • Dimension: $k = \kappa + 1$
  • Redundancy: $m = 2^\kappa - \kappa - 1$
  • Minimum distance: $d = 2^{\kappa - 1}$
Notes

Attributes:

  • kappa (int)

    The parameter $\kappa$ of the code. Must satisfy $\kappa \geq 2$.

  • extended (bool)

    Whether to use the extended version of the Simplex code. Default is False.

This class represents the code in systematic form, with the information set on the left.

Examples:

>>> code = komm.SimplexCode(3)
>>> (code.length, code.dimension, code.redundancy)
(7, 3, 4)
>>> code.generator_matrix
array([[1, 0, 0, 1, 1, 0, 1],
       [0, 1, 0, 1, 0, 1, 1],
       [0, 0, 1, 0, 1, 1, 1]])
>>> code.check_matrix
array([[1, 1, 0, 1, 0, 0, 0],
       [1, 0, 1, 0, 1, 0, 0],
       [0, 1, 1, 0, 0, 1, 0],
       [1, 1, 1, 0, 0, 0, 1]])
>>> code.minimum_distance()
4
>>> code = komm.SimplexCode(3, extended=True)
>>> (code.length, code.dimension, code.redundancy)
(8, 4, 4)
>>> code.generator_matrix
array([[1, 0, 0, 0, 1, 1, 0, 1],
       [0, 1, 0, 0, 1, 0, 1, 1],
       [0, 0, 1, 0, 0, 1, 1, 1],
       [0, 0, 0, 1, 1, 1, 1, 0]])
>>> code.check_matrix
array([[1, 1, 0, 1, 1, 0, 0, 0],
       [1, 0, 1, 1, 0, 1, 0, 0],
       [0, 1, 1, 1, 0, 0, 1, 0],
       [1, 1, 1, 0, 0, 0, 0, 1]])
>>> code.minimum_distance()
4

minimum_distance cached

Returns the minimum distance $d$ of the code. This is equal to the minimum Hamming weight of the non-zero codewords.