komm.SimplexCode
Simplex (maximum-length) code. For a given parameter $\kappa \geq 2$, it is the linear block code with generator matrix whose columns are all the $2^\kappa - 1$ nonzero binary $\kappa$-tuples. The simplex code (also known as maximum-length code) has the following parameters:
- Length: $n = 2^\kappa - 1$
- Dimension: $k = \kappa$
- Redundancy: $m = 2^\kappa - \kappa - 1$
- Minimum distance: $d = 2^{\kappa - 1}$
In its extended version, the simplex code has the following parameters:
- Length: $n = 2^\kappa$
- Dimension: $k = \kappa + 1$
- Redundancy: $m = 2^\kappa - \kappa - 1$
- Minimum distance: $d = 2^{\kappa - 1}$
Notes
- For $\kappa = 2$ it reduces to the single parity-check code of length $3$.
- Its dual is the Hamming code.
- Simplex codes are constant-weight codes.
Attributes:
-
kappa
(int
) –The parameter $\kappa$ of the code. Must satisfy $\kappa \geq 2$.
-
extended
(bool
) –Whether to use the extended version of the Simplex code. Default is
False
.
This class represents the code in systematic form, with the information set on the left.
Examples:
>>> code = komm.SimplexCode(3)
>>> (code.length, code.dimension, code.redundancy)
(7, 3, 4)
>>> code.generator_matrix
array([[1, 0, 0, 1, 1, 0, 1],
[0, 1, 0, 1, 0, 1, 1],
[0, 0, 1, 0, 1, 1, 1]])
>>> code.check_matrix
array([[1, 1, 0, 1, 0, 0, 0],
[1, 0, 1, 0, 1, 0, 0],
[0, 1, 1, 0, 0, 1, 0],
[1, 1, 1, 0, 0, 0, 1]])
>>> code.minimum_distance()
4
>>> code = komm.SimplexCode(3, extended=True)
>>> (code.length, code.dimension, code.redundancy)
(8, 4, 4)
>>> code.generator_matrix
array([[1, 0, 0, 0, 1, 1, 0, 1],
[0, 1, 0, 0, 1, 0, 1, 1],
[0, 0, 1, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 1, 1, 1, 0]])
>>> code.check_matrix
array([[1, 1, 0, 1, 1, 0, 0, 0],
[1, 0, 1, 1, 0, 1, 0, 0],
[0, 1, 1, 1, 0, 0, 1, 0],
[1, 1, 1, 0, 0, 0, 0, 1]])
>>> code.minimum_distance()
4
minimum_distance
cached
Returns the minimum distance $d$ of the code. This is equal to the minimum Hamming weight of the non-zero codewords.