Skip to content

komm.BlockCode

General binary linear block code. It is characterized by its generator matrix $G \in \mathbb{B}^{k \times n}$, and by its check matrix $H \in \mathbb{B}^{m \times n}$, which are related by $G H^\transpose = 0$. The parameters $n$, $k$, and $m$ are called the code length, dimension, and redundancy, respectively, and are related by $k + m = n$. For more details, see LC04, Ch. 3.

The constructor expects either the generator matrix or the check matrix.

Attributes:

  • generator_matrix (NDArray[integer])

    The generator matrix $G$ of the code, which is a $k \times n$ binary matrix.

  • check_matrix (NDArray[integer])

    The check matrix $H$ of the code, which is a $m \times n$ binary matrix.

Examples:

>>> code = komm.BlockCode(generator_matrix=[[1, 0, 0, 1, 1], [0, 1, 1, 1, 0]])
>>> (code.length, code.dimension, code.redundancy)
(5, 2, 3)
>>> code.generator_matrix
array([[1, 0, 0, 1, 1],
       [0, 1, 1, 1, 0]])
>>> code.check_matrix
array([[0, 1, 1, 0, 0],
       [1, 1, 0, 1, 0],
       [1, 0, 0, 0, 1]])
>>> code = komm.BlockCode(check_matrix=[[0, 1, 1, 0, 0], [1, 1, 0, 1, 0], [1, 0, 0, 0, 1]])
>>> (code.length, code.dimension, code.redundancy)
(5, 2, 3)
>>> code.generator_matrix
array([[1, 0, 0, 1, 1],
       [0, 1, 1, 1, 0]])
>>> code.check_matrix
array([[0, 1, 1, 0, 0],
       [1, 1, 0, 1, 0],
       [1, 0, 0, 0, 1]])

length: int property

The length $n$ of the code.

dimension: int property

The dimension $k$ of the code.

redundancy: int property

The redundancy $m$ of the code.

rate: float property

The rate $R = k/n$ of the code.

Examples:

>>> code = komm.BlockCode(generator_matrix=[[1, 0, 0, 1, 1], [0, 1, 1, 1, 0]])
>>> code.rate
0.4

encode

Applies the encoding mapping $\Enc : \mathbb{B}^k \to \mathbb{B}^n$ of the code. This method takes one or more sequences of messages and returns their corresponding codeword sequences.

Parameters:

  • input (ArrayLike)

    The input sequence(s). Can be either a single sequence whose length is a multiple of $k$, or a multidimensional array where the last dimension is a multiple of $k$.

Returns:

  • output (NDArray[integer])

    The output sequence(s). Has the same shape as the input, with the last dimension expanded from $bk$ to $bn$, where $b$ is a positive integer.

Examples:

>>> code = komm.BlockCode(generator_matrix=[[1, 0, 0, 1, 1], [0, 1, 1, 1, 0]])
>>> code.encode([0, 0])  # Sequence with single message
array([0, 0, 0, 0, 0])
>>> code.encode([0, 0, 1, 1])  # Sequence with two messages
array([0, 0, 0, 0, 0, 1, 1, 1, 0, 1])
>>> code.encode([[0, 0], [1, 1]])  # 2D array of single messages
array([[0, 0, 0, 0, 0],
       [1, 1, 1, 0, 1]])
>>> code.encode([[0, 0, 1, 1], [1, 1, 1, 0]])  # 2D array of two messages
array([[0, 0, 0, 0, 0, 1, 1, 1, 0, 1],
       [1, 1, 1, 0, 1, 1, 0, 0, 1, 1]])

inverse_encode

Applies the inverse encoding mapping $\Enc^{-1} : \mathbb{B}^n \to \mathbb{B}^k$ of the code. This method takes one or more sequences of codewords and returns their corresponding message sequences.

Parameters:

  • input (ArrayLike)

    The input sequence(s). Can be either a single sequence whose length is a multiple of $n$, or a multidimensional array where the last dimension is a multiple of $n$.

Returns:

  • output (NDArray[integer])

    The output sequence(s). Has the same shape as the input, with the last dimension contracted from $bn$ to $bk$, where $b$ is a positive integer.

Examples:

>>> code = komm.BlockCode(generator_matrix=[[1, 0, 0, 1, 1], [0, 1, 1, 1, 0]])
>>> code.inverse_encode([0, 0, 0, 0, 0])  # Sequence with single codeword
array([0, 0])
>>> code.inverse_encode([0, 0, 0, 0, 0, 1, 1, 1, 0, 1])  # Sequence with two codewords
array([0, 0, 1, 1])
>>> code.inverse_encode([[0, 0, 0, 0, 0], [1, 1, 1, 0, 1]])  # 2D array of single codewords
array([[0, 0],
       [1, 1]])
>>> code.inverse_encode([[0, 0, 0, 0, 0, 1, 1, 1, 0, 1], [1, 1, 1, 0, 1, 1, 0, 0, 1, 1]]) # 2D array of two codewords
array([[0, 0, 1, 1],
       [1, 1, 1, 0]])

check

Applies the check mapping $\mathrm{Chk}: \mathbb{B}^n \to \mathbb{B}^m$ of the code. This method takes one or more sequences of received words and returns their corresponding syndrome sequences.

Parameters:

  • input (ArrayLike)

    The input sequence(s). Can be either a single sequence whose length is a multiple of $n$, or a multidimensional array where the last dimension is a multiple of $n$.

Returns:

  • output (NDArray[integer])

    The output sequence(s). Has the same shape as the input, with the last dimension contracted from $bn$ to $bm$, where $b$ is a positive integer.

Examples:

>>> code = komm.BlockCode(generator_matrix=[[1, 0, 0, 1, 1], [0, 1, 1, 1, 0]])
>>> code.check([1, 1, 1, 0, 1])  # Sequence with single received word
array([0, 0, 0])
>>> code.check([1, 1, 1, 0, 1, 1, 1, 1, 1, 1])  # Sequence with two received words
array([0, 0, 0, 0, 1, 0])
>>> code.check([[1, 1, 1, 0, 1], [1, 1, 1, 1, 1]])  # 2D array of single received words
array([[0, 0, 0],
       [0, 1, 0]])
>>> code.check([[1, 1, 1, 0, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 0, 0, 0, 1, 1]])  # 2D array of two received words
array([[0, 0, 0, 0, 1, 0],
       [0, 1, 0, 0, 1, 1]])

codewords cached

Returns the codewords of the code. This is a $2^k \times n$ matrix whose rows are all the codewords. The codeword in row $i$ corresponds to the message obtained by expressing $i$ in binary with $k$ bits (MSB in the right).

Examples:

>>> code = komm.BlockCode(generator_matrix=[[1, 0, 0, 1, 1], [0, 1, 1, 1, 0]])
>>> code.codewords()
array([[0, 0, 0, 0, 0],
       [1, 0, 0, 1, 1],
       [0, 1, 1, 1, 0],
       [1, 1, 1, 0, 1]])

codeword_weight_distribution cached

Returns the codeword weight distribution of the code. This is an array of shape $(n + 1)$ in which element in position $w$ is equal to the number of codewords of Hamming weight $w$, for $w \in [0 : n]$.

Examples:

>>> code = komm.BlockCode(generator_matrix=[[1, 0, 0, 1, 1], [0, 1, 1, 1, 0]])
>>> code.codeword_weight_distribution()
array([1, 0, 0, 2, 1, 0])

minimum_distance cached

Returns the minimum distance $d$ of the code. This is equal to the minimum Hamming weight of the non-zero codewords.

Examples:

>>> code = komm.BlockCode(generator_matrix=[[1, 0, 0, 1, 1], [0, 1, 1, 1, 0]])
>>> code.minimum_distance()
3

coset_leaders cached

Returns the coset leaders of the code. This is a $2^m \times n$ matrix whose rows are all the coset leaders. The coset leader in row $i$ corresponds to the syndrome obtained by expressing $i$ in binary with $m$ bits (MSB in the right), and whose Hamming weight is minimal. This may be used as a LUT for syndrome-based decoding.

Examples:

>>> code = komm.BlockCode(generator_matrix=[[1, 0, 0, 1, 1], [0, 1, 1, 1, 0]])
>>> code.coset_leaders()
array([[0, 0, 0, 0, 0],
       [0, 0, 1, 0, 0],
       [0, 0, 0, 1, 0],
       [0, 1, 0, 0, 0],
       [0, 0, 0, 0, 1],
       [1, 1, 0, 0, 0],
       [1, 0, 0, 0, 0],
       [1, 0, 1, 0, 0]])

coset_leader_weight_distribution cached

Returns the coset leader weight distribution of the code. This is an array of shape $(n + 1)$ in which element in position $w$ is equal to the number of coset leaders of weight $w$, for $w \in [0 : n]$.

Examples:

>>> code = komm.BlockCode(generator_matrix=[[1, 0, 0, 1, 1], [0, 1, 1, 1, 0]])
>>> code.coset_leader_weight_distribution()
array([1, 5, 2, 0, 0, 0])

packing_radius cached

Returns the packing radius of the code. This is also called the error-correcting capability of the code, and is equal to $\lfloor (d - 1) / 2 \rfloor$.

Examples:

>>> code = komm.BlockCode(generator_matrix=[[1, 0, 0, 1, 1], [0, 1, 1, 1, 0]])
>>> code.packing_radius()
1

covering_radius cached

Returns the covering radius of the code. This is equal to the maximum Hamming weight of the coset leaders.

Examples:

>>> code = komm.BlockCode(generator_matrix=[[1, 0, 0, 1, 1], [0, 1, 1, 1, 0]])
>>> code.covering_radius()
2