Skip to content

komm.HammingCode

Hamming code. For a given parameter $\mu \geq 2$, it is the linear block code with check matrix whose columns are all the $2^\mu - 1$ nonzero binary $\mu$-tuples. The Hamming code has the following parameters:

  • Length: $n = 2^\mu - 1$
  • Dimension: $k = 2^\mu - \mu - 1$
  • Redundancy: $m = \mu$
  • Minimum distance: $d = 3$

In its extended version, the Hamming code has the following parameters:

  • Length: $n = 2^\mu$
  • Dimension: $k = 2^\mu - \mu - 1$
  • Redundancy: $m = \mu + 1$
  • Minimum distance: $d = 4$

For more details, see LC04, Sec. 4.1.

Notes

Attributes:

  • mu (int)

    The parameter $\mu$ of the code. Must satisfy $\mu \geq 2$.

  • extended (bool)

    Whether to use the extended version of the Hamming code. Default is False.

This class represents the code in systematic form, with the information set on the left.

Examples:

>>> code = komm.HammingCode(3)
>>> (code.length, code.dimension, code.redundancy)
(7, 4, 3)
>>> code.generator_matrix
array([[1, 0, 0, 0, 1, 1, 0],
       [0, 1, 0, 0, 1, 0, 1],
       [0, 0, 1, 0, 0, 1, 1],
       [0, 0, 0, 1, 1, 1, 1]])
>>> code.check_matrix
array([[1, 1, 0, 1, 1, 0, 0],
       [1, 0, 1, 1, 0, 1, 0],
       [0, 1, 1, 1, 0, 0, 1]])
>>> code.minimum_distance()
3
>>> code = komm.HammingCode(3, extended=True)
>>> (code.length, code.dimension, code.redundancy)
(8, 4, 4)
>>> code.generator_matrix
array([[1, 0, 0, 0, 1, 1, 0, 1],
       [0, 1, 0, 0, 1, 0, 1, 1],
       [0, 0, 1, 0, 0, 1, 1, 1],
       [0, 0, 0, 1, 1, 1, 1, 0]])
>>> code.check_matrix
array([[1, 1, 0, 1, 1, 0, 0, 0],
       [1, 0, 1, 1, 0, 1, 0, 0],
       [0, 1, 1, 1, 0, 0, 1, 0],
       [1, 1, 1, 0, 0, 0, 0, 1]])
>>> code.minimum_distance()
4

minimum_distance cached

Returns the minimum distance $d$ of the code. This is equal to the minimum Hamming weight of the non-zero codewords.