komm.SingleParityCheckCode
Single parity-check code. For a given length $n \geq 1$, it is the linear block code whose codewords are obtained by extending $n - 1$ information bits with a single parity-check bit. The repetition code has the following parameters:
- Length: $n$.
- Dimension: $k = n - 1$.
- Redundancy: $m = 1$.
- Minimum distance: $d = 2$.
Notes
- Its dual is the repetition code.
Attributes:
-
n
(int
) –The length $n$ of the code. Must be a positive integer.
Examples:
>>> code = komm.SingleParityCheckCode(5)
>>> (code.length, code.dimension, code.redundancy)
(5, 4, 1)
>>> code.generator_matrix
array([[1, 0, 0, 0, 1],
[0, 1, 0, 0, 1],
[0, 0, 1, 0, 1],
[0, 0, 0, 1, 1]])
>>> code.check_matrix
array([[1, 1, 1, 1, 1]])
>>> code.minimum_distance()
2
>>> code = komm.SingleParityCheckCode(16)
>>> code.codeword_weight_distribution()
array([ 1, 0, 120, 0, 1820, 0, 8008, 0, 12870,
0, 8008, 0, 1820, 0, 120, 0, 1])
>>> code.coset_leader_weight_distribution()
array([1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
minimum_distance
cached
Returns the minimum distance $d$ of the code. This is equal to the minimum Hamming weight of the non-zero codewords.
Examples:
>>> code = komm.BlockCode(generator_matrix=[[1, 0, 0, 1, 1], [0, 1, 1, 1, 0]])
>>> code.minimum_distance()
3
codeword_weight_distribution
cached
Returns the codeword weight distribution of the code. This is an array of shape $(n + 1)$ in which element in position $w$ is equal to the number of codewords of Hamming weight $w$, for $w \in [0 : n]$.
Examples:
>>> code = komm.BlockCode(generator_matrix=[[1, 0, 0, 1, 1], [0, 1, 1, 1, 0]])
>>> code.codeword_weight_distribution()
array([1, 0, 0, 2, 1, 0])