komm.GolayCode
Binary Golay code. It is the linear block code with parity submatrix $$ P = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \end{bmatrix} $$
The Golay code has the following parameters:
- Length: $23$
- Dimension: $12$
- Minimum distance: $7$
Notes
- The binary Golay code is a perfect code.
Attributes:
-
extended
(bool
) –If
True
, constructs the code in extended version. The default value isFalse
.
This class represents the code in systematic form, with the information set on the left.
Examples:
>>> code = komm.GolayCode()
>>> (code.length, code.dimension, code.redundancy)
(23, 12, 11)
>>> code.minimum_distance()
7
>>> code = komm.GolayCode(extended=True)
>>> (code.length, code.dimension, code.redundancy)
(24, 12, 12)
>>> code.minimum_distance()
8
minimum_distance
cached
Returns the minimum distance $d$ of the code. This is equal to the minimum Hamming weight of the non-zero codewords.