Skip to content

komm.GolayCode

Binary Golay code. It is the linear block code with parity submatrix $$ P = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \end{bmatrix} $$

The Golay code has the following parameters:

  • Length: $23$
  • Dimension: $12$
  • Minimum distance: $7$
Notes
  • The binary Golay code is a perfect code.

Attributes:

  • extended (bool)

    If True, constructs the code in extended version. The default value is False.

This function returns the code in systematic form, with the information set on the left.

Examples:

>>> code = komm.GolayCode()
>>> (code.length, code.dimension, code.redundancy)
(23, 12, 11)
>>> code.minimum_distance
7
>>> code = komm.GolayCode(extended=True)
>>> (code.length, code.dimension, code.redundancy)
(24, 12, 12)
>>> code.minimum_distance
8