komm.gaussian_q
Computes the Gaussian Q-function. It is given by $$ \mathrm{Q}(x) = \frac{1}{\sqrt{2\pi}} \int_x^\infty \mathrm{e}^{-u^2/2} \, \mathrm{d}u. $$ This corresponds to the complementary cumulative distribution function of the standard gaussian distribution. For more details, see Wikipedia: Q-function.
Parameters:
-
x
(ArrayLike
) –The input to the function. Should be a float or array of floats.
Returns:
-
y
(NDArray[floating] | floating
) –The value $y = \mathrm{Q}(x)$.
Examples:
>>> komm.gaussian_q(0.0)
np.float64(0.5)
>>> komm.gaussian_q([[-1.0], [0.0], [1.0]])
array([[0.84134475],
[0.5 ],
[0.15865525]])