komm.acorr
Computes the autocorrelation $R[\ell]$ of a real or complex sequence $x[n]$. This is defined as $$ R[\ell] = \sum_{n \in \mathbb{Z}} x[n] x^*_\ell[n], $$ where $x^*_\ell[n] = x^*[n - \ell]$ is the complex conjugate of $x[n]$ shifted by $\ell$ positions. The autocorrelation $R[\ell]$ is even symmetric and satisfies $R[\ell] = 0$ for $|\ell| \geq L$, where $L$ is the length of the sequence.
Parameters:
-
seq
(Array1D[float | complex]
) –A 1D-array containing the sequence $x[n]$, of length $L$.
-
shifts
(Optional[Array1D[int]]
) –A 1D-array containing the values of $\ell$ for which the autocorrelation will be computed. The default value is
range(len(seq))
, that is, $[0 : L)$. -
normalized
(Optional[bool]
) –If
True
, returns the autocorrelation divided by the sequence energy, so that $R[0] = 1$. The default value isFalse
.
Returns:
-
acorr
(SameAsInput
) –The autocorrelation $R[\ell]$ of the sequence.
Examples:
>>> komm.acorr([1.0, 2.0, 3.0, 4.0], shifts=[-2, -1, 0, 1, 2])
array([11., 20., 30., 20., 11.])