komm.UniformQuantizer
Uniform scalar quantizer. It is a scalar quantizer in which the separation between levels is constant, $\Delta$, and the thresholds are the mid-point between adjacent levels. For more details, see Say06, Sec. 9.4.
Attributes:
-
num_levels
(int
) –The number of quantization levels $L$. It must be greater than $1$.
-
input_range
(tuple[float, float]
) –The range $(x_\mathrm{min}, x_\mathrm{max})$ of the input signal. The default is $(-1.0, 1.0)$.
-
choice
(Literal['mid-riser', 'mid-tread']
) –The choice for the uniform quantizer. Must be either
'mid-riser'
or'mid-tread'
. The default is'mid-riser'
.
Examples:
>>> quantizer = komm.UniformQuantizer(num_levels=4, input_range=(-1.0, 1.0), choice='mid-riser')
>>> quantizer.levels
array([-0.75, -0.25, 0.25, 0.75])
>>> quantizer.thresholds
array([-0.5, 0. , 0.5])
>>> quantizer = komm.UniformQuantizer(num_levels=4, input_range=(-1.0, 1.0), choice='mid-tread')
>>> quantizer.levels
array([-1. , -0.5, 0. , 0.5])
>>> quantizer.thresholds
array([-0.75, -0.25, 0.25])
>>> quantizer = komm.UniformQuantizer(num_levels=4, input_range=(0.0, 1.0), choice='mid-tread')
>>> quantizer.levels
array([0. , 0.25, 0.5 , 0.75])
>>> quantizer.thresholds
array([0.125, 0.375, 0.625])
quantization_step: float
cached
property
The quantization step $\Delta$.
Examples:
>>> quantizer = komm.UniformQuantizer(num_levels=4, input_range=(-1.0, 1.0), choice='mid-riser')
>>> quantizer.quantization_step
0.5
levels: npt.NDArray[np.floating]
cached
property
The quantizer levels $v_0, v_1, \ldots, v_{L-1}$.
Examples:
>>> quantizer = komm.UniformQuantizer(num_levels=4, input_range=(-1.0, 1.0), choice='mid-riser')
>>> quantizer.levels
array([-0.75, -0.25, 0.25, 0.75])
thresholds: npt.NDArray[np.floating]
cached
property
The quantizer finite thresholds $t_1, t_2, \ldots, t_{L-1}$.
Examples:
>>> quantizer = komm.UniformQuantizer(num_levels=4, input_range=(-1.0, 1.0), choice='mid-riser')
>>> quantizer.thresholds
array([-0.5, 0. , 0.5])
__call__
Quantizes the input signal.
Parameters:
-
input
(ArrayLike
) –The input signal $x$ to be quantized.
Returns:
-
output
(NDArray[floating]
) –The quantized signal $y$.
Examples:
>>> quantizer = komm.UniformQuantizer(num_levels=4, input_range=(-1.0, 1.0), choice='mid-riser')
>>> quantizer([-0.6, 0.2, 0.8])
array([-0.75, 0.25, 0.75])