komm.ShannonCode
Binary Shannon code. It is a fixed-to-variable length code in which the length of the codeword $\Enc(u)$ for a source symbol $u \in \mathcal{S}^k$ is given by $$ \ell_u = \left\lceil \log_2 \frac{1}{p_u} \right\rceil, $$ where $p_u$ is the probability of the source symbol $u$. This function implements the lexicographic order assignment as described in Wikipedia: Shannon–Fano coding.
Notes
Shannon codes are always prefix-free (hence uniquely decodable).
Parameters:
-
pmf
(ArrayLike
) –The probability mass function of the source.
-
source_block_size
(int
) –The source block size $k$. The default value is $k = 1$.
Examples:
>>> pmf = [0.7, 0.15, 0.15]
>>> code = komm.ShannonCode(pmf, 1)
>>> code.enc_mapping
{(0,): (0,),
(1,): (1, 0, 0),
(2,): (1, 0, 1)}
>>> code.rate(pmf)
np.float64(1.6)
>>> code = komm.ShannonCode(pmf, 2)
>>> code.enc_mapping
{(0, 0): (0, 0),
(0, 1): (0, 1, 0, 0),
(0, 2): (0, 1, 0, 1),
(1, 0): (0, 1, 1, 0),
(1, 1): (1, 0, 0, 0, 0, 0),
(1, 2): (1, 0, 0, 0, 0, 1),
(2, 0): (0, 1, 1, 1),
(2, 1): (1, 0, 0, 0, 1, 0),
(2, 2): (1, 0, 0, 0, 1, 1)}
>>> code.rate(pmf)
np.float64(1.6)