komm.ReflectedRectangularLabeling
Reflected rectangular binary labeling. It is the Cartesian product of two reflected binary labelings, possibly with distinct number of bits.
matrix
NDArray[integer]
cached
property
The labeling matrix $\mathbf{Q}$.
Examples:
>>> labeling = komm.ReflectedRectangularLabeling(4)
>>> labeling.matrix
array([[0, 0, 0, 0],
[0, 0, 0, 1],
[0, 0, 1, 1],
[0, 0, 1, 0],
[0, 1, 0, 0],
[0, 1, 0, 1],
[0, 1, 1, 1],
[0, 1, 1, 0],
[1, 1, 0, 0],
[1, 1, 0, 1],
[1, 1, 1, 1],
[1, 1, 1, 0],
[1, 0, 0, 0],
[1, 0, 0, 1],
[1, 0, 1, 1],
[1, 0, 1, 0]])
num_bits
int
property
The number $m$ of bits per index of the labeling.
Examples:
>>> labeling = komm.ReflectedRectangularLabeling(4)
>>> labeling.num_bits
4
cardinality
int
property
The cardinality $2^m$ of the labeling.
Examples:
>>> labeling = komm.ReflectedRectangularLabeling(4)
>>> labeling.cardinality
16
inverse_mapping
dict[tuple[int, ...], int]
property
The inverse mapping of the labeling. It is a dictionary that maps each binary tuple to the corresponding index.
Examples:
>>> labeling = komm.ReflectedRectangularLabeling(4 )
>>> labeling.inverse_mapping
{(0, 0, 0, 0): 0,
(0, 0, 0, 1): 1,
(0, 0, 1, 1): 2,
(0, 0, 1, 0): 3,
(0, 1, 0, 0): 4,
(0, 1, 0, 1): 5,
(0, 1, 1, 1): 6,
(0, 1, 1, 0): 7,
(1, 1, 0, 0): 8,
(1, 1, 0, 1): 9,
(1, 1, 1, 1): 10,
(1, 1, 1, 0): 11,
(1, 0, 0, 0): 12,
(1, 0, 0, 1): 13,
(1, 0, 1, 1): 14,
(1, 0, 1, 0): 15}
indices_to_bits()
Returns the binary representation of the given indices.
Parameters:
-
indices
(ArrayLike
) –The indices to be converted to bits. Must be an array of integers in $[0:2^m)$.
Returns:
-
bits
(NDArray[integer]
) –The binary representations of the given indices. Has the same shape as
indices
, but with the last dimension expanded by a factor of $m$.
Examples:
>>> labeling = komm.ReflectedRectangularLabeling(4)
>>> labeling.indices_to_bits([8, 13])
array([1, 1, 0, 0, 1, 0, 0, 1])
>>> labeling.indices_to_bits([[8, 13], [0, 1]])
array([[1, 1, 0, 0, 1, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 1]])
bits_to_indices()
Returns the indices corresponding to a given sequence of bits.
Parameters:
-
bits
(ArrayLike
) –The bits to be converted to indices. Must be an array with elements in $\mathbb{B}$ whose last dimension is a multiple $m$.
Returns:
-
indices
(NDArray[integer]
) –The indices corresponding to the given bits. Has the same shape as
bits
, but with the last dimension contracted by a factor of $m$.
Examples:
>>> labeling = komm.ReflectedRectangularLabeling(4)
>>> labeling.bits_to_indices([1, 1, 0, 0, 1, 0, 0, 1])
array([ 8, 13])
>>> labeling.bits_to_indices([
... [1, 1, 0, 0, 1, 0, 0, 1],
... [0, 0, 0, 0, 0, 0, 0, 1],
... ])
array([[ 8, 13],
[ 0, 1]])
marginalize()
Marginalize metrics over the bits of the labeling. The metrics may represent likelihoods or probabilities, for example. The marginalization is done by computing the L-values of the bits, which are defined as $$ L(\mathtt{b}_i) = \log \frac{\Pr[\mathtt{b}_i = 0]}{\Pr[\mathtt{b}_i = 1]}. $$
Parameters:
-
metrics
(ArrayLike
) –The metrics for each index of the labeling. Must be an array whose last dimension is a multiple of $2^m$.
Returns:
-
lvalues
(NDArray[floating]
) –The marginalized metrics over the bits of the labeling. Has the same shape as
metrics
, but with the last dimension changed by a factor of $m / 2^m$.