komm.DiscreteMemorylessSource
Discrete memoryless source (DMS). It is defined by an alphabet $\mathcal{X}$ and a probability mass function (pmf) $p_X$. Here, for simplicity, the alphabet is always taken as $\mathcal{X} = \{ 0, 1, \ldots, |\mathcal{X}| - 1 \}$. The pmf $p_X$ gives the probability of the source emitting the symbol $X = x$.
Attributes:
-
pmf
(NDArray[floating]
) –The source probability mass function $p_X$. The element in position $x \in \mathcal{X}$ must be equal to $p_X(x)$.
cardinality: int
property
The cardinality $|\mathcal{X}|$ of the source alphabet.
entropy
Returns the source entropy $\mathrm{H}(X)$. See komm.entropy
for more details.
Parameters:
-
base
(Optional[float | str]
) –See
komm.entropy
. The default value is $2.0$.
Examples:
>>> dms = komm.DiscreteMemorylessSource([1/2, 1/4, 1/8, 1/8])
>>> dms.entropy()
np.float64(1.75)
>>> dms.entropy(base=4)
np.float64(0.875)
__call__
Returns random samples from the source.
Parameters:
-
shape
(int | tuple[int, ...]
) –The shape of the output array. If
shape
is an integer, the output array will have shape(shape,)
. The default value is()
, which returns a single sample.
Returns:
-
NDArray[integer]
–An array of shape
shape
with random samples from the source.
Examples:
>>> rng = np.random.default_rng(seed=42)
>>> dms = komm.DiscreteMemorylessSource([0.5, 0.4, 0.1], rng=rng)
>>> dms()
array(1)
>>> dms(10)
array([0, 1, 1, 0, 2, 1, 1, 0, 0, 0])
>>> dms((2, 5))
array([[2, 1, 1, 0, 0],
[1, 0, 1, 1, 1]])