komm.ConvolutionalCode
Binary convolutional code. It is characterized by a matrix of feedforward polynomials , of shape , and (optionally) by a vector of feedback polynomials , of length . The element in row and column of is denoted by , and the element in position of is denoted by ; they are binary polynomials in . The parameters and are the number of input and output bits per block, respectively.
The transfer function matrix (also known as transform-domain generator matrix) of the convolutional code, of shape , is such that the element in row and column is given by for and .
The constraint lengths of the code are defined by for .
The overall constraint length of the code is defined by
The memory order of the code is defined by
For more details, see JZ15 and LC04, Chs. 11, 12.
Parameters:
-
feedforward_polynomials
(ArrayLike
) –The matrix of feedforward polynomials , which is a matrix whose entries are either binary polynomials or integers to be converted to the former.
-
feedback_polynomials
(ArrayLike | None
) –The vector of feedback polynomials , which is a -vector whose entries are either binary polynomials or integers to be converted to the former. The default value corresponds to no feedback, that is, for all .
Examples:
-
The convolutional code with encoder depicted in the figure below has parameters ; its transfer function matrix is given by yielding
feedforward_polynomials = [[0b1001111, 0b1101101]] = [[0o117, 0o155]] = [[79, 109]]
.>>> code = komm.ConvolutionalCode(feedforward_polynomials=[[0o117, 0o155]]) >>> (code.num_output_bits, code.num_input_bits, code.overall_constraint_length) (2, 1, 6)
-
The convolutional code with encoder depicted in the figure below has parameters ; its transfer function matrix is given by yielding
feedforward_polynomials = [[0b11001, 0b10111, 0b00000], [0b0000, 0b1010, 0b1101]] = [[0o31, 0o27, 0o00], [0o00, 0o12, 0o15]] = [[25, 23, 0], [0, 10, 13]]
.>>> code = komm.ConvolutionalCode( ... feedforward_polynomials=[[0o31, 0o27, 0o00], [0o00, 0o12, 0o15]], ... ) >>> (code.num_output_bits, code.num_input_bits, code.overall_constraint_length) (3, 2, 7)
-
The convolutional code with feedback encoder depicted in the figure below has parameters ; its transfer function matrix is given by yielding
feedforward_polynomials = [[0b10111, 0b11001]] = [[0o27, 0o31]] = [[23, 25]]
andfeedback_polynomials = [0b10111] = [0o27] = [23]
.>>> code = komm.ConvolutionalCode( ... feedforward_polynomials=[[0o27, 0o31]], ... feedback_polynomials=[0o27], ... ) >>> (code.num_output_bits, code.num_input_bits, code.overall_constraint_length) (2, 1, 4)
Tables of optimal convolutional codes
The tables below LC04, Sec. 12.3 lists optimal convolutional codes with no feedback, for parameters and , and small values of the overall constraint length .
Parameters | Transfer function matrix |
---|---|
[[0o1, 0o3]] |
|
[[0o5, 0o7]] |
|
[[0o13, 0o17]] |
|
[[0o27, 0o31]] |
|
[[0o53, 0o75]] |
|
[[0o117, 0o155]] |
|
[[0o247, 0o371]] |
|
[[0o561, 0o753]] |
Parameters | Transfer function matrix |
---|---|
[[0o1, 0o3, 0o3]] |
|
[[0o5, 0o7, 0o7]] |
|
[[0o13, 0o15, 0o17]] |
|
[[0o25, 0o33, 0o37]] |
|
[[0o47, 0o53, 0o75]] |
|
[[0o117, 0o127, 0o155]] |
|
[[0o255, 0o331, 0o367]] |
|
[[0o575, 0o623, 0o727]] |
num_input_bits
int
cached
property
The number of input bits per block, .
Examples:
>>> code = komm.ConvolutionalCode(
... feedforward_polynomials=[[0o31, 0o27, 0o00], [0o00, 0o12, 0o15]],
... )
>>> code.num_input_bits
2
num_output_bits
int
cached
property
The number of output bits per block, .
Examples:
>>> code = komm.ConvolutionalCode(
... feedforward_polynomials=[[0o31, 0o27, 0o00], [0o00, 0o12, 0o15]],
... )
>>> code.num_output_bits
3
transfer_function_matrix
NDArray[object_]
cached
property
The transfer function matrix of the code. This is a array of binary polynomial fractions.
Examples:
>>> code = komm.ConvolutionalCode(
... feedforward_polynomials=[[0o31, 0o27, 0o00], [0o00, 0o12, 0o15]],
... )
>>> for row in code.transfer_function_matrix:
... print("[" + ", ".join(str(x).ljust(12) for x in row) + "]")
[0b11001/0b1 , 0b10111/0b1 , 0b0/0b1 ]
[0b0/0b1 , 0b1010/0b1 , 0b1101/0b1 ]
>>> code = komm.ConvolutionalCode(
... feedforward_polynomials=[[0o27, 0o31]],
... feedback_polynomials=[0o27],
... )
>>> for row in code.transfer_function_matrix:
... print("[" + ", ".join(str(x) for x in row) + "]")
[0b1/0b1, 0b11001/0b10111]
constraint_lengths
NDArray[integer]
cached
property
The constraint lengths of the code, for . This is a -array of integers.
Examples:
>>> code = komm.ConvolutionalCode(
... feedforward_polynomials=[[0o31, 0o27, 0o00], [0o00, 0o12, 0o15]],
... )
>>> code.constraint_lengths
array([4, 3])
overall_constraint_length
int
cached
property
The overall constraint length of the code.
Examples:
>>> code = komm.ConvolutionalCode(
... feedforward_polynomials=[[0o31, 0o27, 0o00], [0o00, 0o12, 0o15]],
... )
>>> code.overall_constraint_length
7
memory_order
int
cached
property
The memory order of the code.
Examples:
>>> code = komm.ConvolutionalCode(
... feedforward_polynomials=[[0o31, 0o27, 0o00], [0o00, 0o12, 0o15]],
... )
>>> code.memory_order
4
finite_state_machine()
cached
Returns the finite-state machine of the code, in direct form.
Returns:
-
FiniteStateMachine
–The finite-state machine of the code.
Examples:
>>> code = komm.ConvolutionalCode(feedforward_polynomials=[[0b101, 0b111]])
>>> code.finite_state_machine()
FiniteStateMachine(next_states=[[0, 1], [2, 3], [0, 1], [2, 3]],
outputs=[[0, 3], [2, 1], [3, 0], [1, 2]])
state_space_representation()
cached
Returns the state-space representation of the code. Let be the input block, output block, and state, respectively, all defined at time instant . Then, where is the state matrix, is the control matrix, is the observation matrix, and is the transition matrix. They are all binary matrices. For more details, see WBR01.
Returns:
-
NDArray[integer]
–The state matrix of the code.
-
NDArray[integer]
–The control matrix of the code.
-
NDArray[integer]
–The observation matrix of the code.
-
NDArray[integer]
–The transition matrix of the code.
Examples:
>>> code = komm.ConvolutionalCode(feedforward_polynomials=[[0b101, 0b111]])
>>> state_matrix, control_matrix, observation_matrix, transition_matrix = (
... code.state_space_representation()
... )
>>> state_matrix
array([[0, 1],
[0, 0]])
>>> control_matrix
array([[1, 0]])
>>> observation_matrix
array([[0, 1],
[1, 1]])
>>> transition_matrix
array([[1, 1]])