Skip to content

komm.ConvolutionalCode

Binary convolutional code. It is characterized by a matrix of feedforward polynomials P(D)\mathbf{P}(D), of shape k×nk \times n, and (optionally) by a vector of feedback polynomials q(D)\mathbf{q}(D), of length kk. The element in row ii and column jj of P(D)\mathbf{P}(D) is denoted by pi,j(D)p_{i,j}(D), and the element in position ii of q(D)\mathbf{q}(D) is denoted by qi(D)q_i(D); they are binary polynomials in DD. The parameters kk and nn are the number of input and output bits per block, respectively.

The transfer function matrix (also known as transform-domain generator matrix) G(D)\mathbf{G}(D) of the convolutional code, of shape k×nk \times n, is such that the element in row ii and column jj is given by gi,j(D)=pi,j(D)qi(D), g_{i,j}(D) = \frac{p_{i,j}(D)}{q_{i}(D)}, for i[0:k)i \in [0 : k) and j[0:n)j \in [0 : n).

The constraint lengths of the code are defined by νi=max{degpi,0(D),degpi,1(D),,degpi,n1(D),degqi(D)}, \nu_i = \max \{ \deg p_{i,0}(D), \deg p_{i,1}(D), \ldots, \deg p_{i,n-1}(D), \deg q_i(D) \}, for i[0:k)i \in [0 : k).

The overall constraint length of the code is defined by ν=0i<kνi. \nu = \sum_{0 \leq i < k} \nu_i.

The memory order of the code is defined by μ=max0i<kνi. \mu = \max_{0 \leq i < k} \nu_i.

For more details, see JZ15 and LC04, Chs. 11, 12.

Parameters:

  • feedforward_polynomials (ArrayLike)

    The matrix of feedforward polynomials P(D)\mathbf{P}(D), which is a k×nk \times n matrix whose entries are either binary polynomials or integers to be converted to the former.

  • feedback_polynomials (ArrayLike | None)

    The vector of feedback polynomials q(D)\mathbf{q}(D), which is a kk-vector whose entries are either binary polynomials or integers to be converted to the former. The default value corresponds to no feedback, that is, qi(D)=1q_i(D) = 1 for all i[0:k)i \in [0 : k).

Examples:

  1. The convolutional code with encoder depicted in the figure below has parameters (n,k,ν)=(2,1,6)(n, k, \nu) = (2, 1, 6); its transfer function matrix is given by G(D)=[D6+D3+D2+D+1D6+D5+D3+D2+1], \mathbf{G}(D) = \begin{bmatrix} D^6 + D^3 + D^2 + D + 1 & D^6 + D^5 + D^3 + D^2 + 1 \end{bmatrix}, yielding feedforward_polynomials = [[0b1001111, 0b1101101]] = [[0o117, 0o155]] = [[79, 109]].

    Convolutional encoder for (2, 1, 6) code.

    >>> code = komm.ConvolutionalCode(feedforward_polynomials=[[0o117, 0o155]])
    >>> (code.num_output_bits, code.num_input_bits, code.overall_constraint_length)
    (2, 1, 6)
    
  2. The convolutional code with encoder depicted in the figure below has parameters (n,k,ν)=(3,2,7)(n, k, \nu) = (3, 2, 7); its transfer function matrix is given by G(D)=[D4+D3+1D4+D2+D+100D3+DD3+D2+1], \mathbf{G}(D) = \begin{bmatrix} D^4 + D^3 + 1 & D^4 + D^2 + D + 1 & 0 \\ 0 & D^3 + D & D^3 + D^2 + 1 \end{bmatrix}, yielding feedforward_polynomials = [[0b11001, 0b10111, 0b00000], [0b0000, 0b1010, 0b1101]] = [[0o31, 0o27, 0o00], [0o00, 0o12, 0o15]] = [[25, 23, 0], [0, 10, 13]].

    Convolutional encoder for (3, 2, 7) code.

    >>> code = komm.ConvolutionalCode(
    ...     feedforward_polynomials=[[0o31, 0o27, 0o00], [0o00, 0o12, 0o15]],
    ... )
    >>> (code.num_output_bits, code.num_input_bits, code.overall_constraint_length)
    (3, 2, 7)
    
  3. The convolutional code with feedback encoder depicted in the figure below has parameters (n,k,ν)=(2,1,4)(n, k, \nu) = (2, 1, 4); its transfer function matrix is given by G(D)=[1D4+D3+1D4+D2+D+1], \mathbf{G}(D) = \begin{bmatrix} 1 & \dfrac{D^4 + D^3 + 1}{D^4 + D^2 + D + 1} \end{bmatrix}, yielding feedforward_polynomials = [[0b10111, 0b11001]] = [[0o27, 0o31]] = [[23, 25]] and feedback_polynomials = [0b10111] = [0o27] = [23].

    Convolutional encoder for (2, 1, 4) feedback code.

    >>> code = komm.ConvolutionalCode(
    ...     feedforward_polynomials=[[0o27, 0o31]],
    ...     feedback_polynomials=[0o27],
    ... )
    >>> (code.num_output_bits, code.num_input_bits, code.overall_constraint_length)
    (2, 1, 4)
    

Tables of optimal convolutional codes

The tables below LC04, Sec. 12.3 lists optimal convolutional codes with no feedback, for parameters (n,k)=(2,1)(n,k) = (2,1) and (n,k)=(3,1)(n,k) = (3,1), and small values of the overall constraint length ν\nu.

Parameters (n,k,ν)(n, k, \nu) Transfer function matrix G(D)\mathbf{G}(D)
(2,1,1)(2, 1, 1) [[0o1, 0o3]]
(2,1,2)(2, 1, 2) [[0o5, 0o7]]
(2,1,3)(2, 1, 3) [[0o13, 0o17]]
(2,1,4)(2, 1, 4) [[0o27, 0o31]]
(2,1,5)(2, 1, 5) [[0o53, 0o75]]
(2,1,6)(2, 1, 6) [[0o117, 0o155]]
(2,1,7)(2, 1, 7) [[0o247, 0o371]]
(2,1,8)(2, 1, 8) [[0o561, 0o753]]
Parameters (n,k,ν)(n, k, \nu) Transfer function matrix G(D)\mathbf{G}(D)
(3,1,1)(3, 1, 1) [[0o1, 0o3, 0o3]]
(3,1,2)(3, 1, 2) [[0o5, 0o7, 0o7]]
(3,1,3)(3, 1, 3) [[0o13, 0o15, 0o17]]
(3,1,4)(3, 1, 4) [[0o25, 0o33, 0o37]]
(3,1,5)(3, 1, 5) [[0o47, 0o53, 0o75]]
(3,1,6)(3, 1, 6) [[0o117, 0o127, 0o155]]
(3,1,7)(3, 1, 7) [[0o255, 0o331, 0o367]]
(3,1,8)(3, 1, 8) [[0o575, 0o623, 0o727]]

num_input_bits int cached property

The number of input bits per block, kk.

Examples:

>>> code = komm.ConvolutionalCode(
...     feedforward_polynomials=[[0o31, 0o27, 0o00], [0o00, 0o12, 0o15]],
... )
>>> code.num_input_bits
2

num_output_bits int cached property

The number of output bits per block, nn.

Examples:

>>> code = komm.ConvolutionalCode(
...     feedforward_polynomials=[[0o31, 0o27, 0o00], [0o00, 0o12, 0o15]],
... )
>>> code.num_output_bits
3

transfer_function_matrix NDArray[object_] cached property

The transfer function matrix G(D)\mathbf{G}(D) of the code. This is a k×nk \times n array of binary polynomial fractions.

Examples:

>>> code = komm.ConvolutionalCode(
...     feedforward_polynomials=[[0o31, 0o27, 0o00], [0o00, 0o12, 0o15]],
... )
>>> for row in code.transfer_function_matrix:
...     print("[" + ", ".join(str(x).ljust(12) for x in row) + "]")
[0b11001/0b1 , 0b10111/0b1 , 0b0/0b1     ]
[0b0/0b1     , 0b1010/0b1  , 0b1101/0b1  ]
>>> code = komm.ConvolutionalCode(
...     feedforward_polynomials=[[0o27, 0o31]],
...     feedback_polynomials=[0o27],
... )
>>> for row in code.transfer_function_matrix:
...     print("[" + ", ".join(str(x) for x in row) + "]")
[0b1/0b1, 0b11001/0b10111]

constraint_lengths NDArray[integer] cached property

The constraint lengths νi\nu_i of the code, for i[0:k)i \in [0 : k). This is a kk-array of integers.

Examples:

>>> code = komm.ConvolutionalCode(
...     feedforward_polynomials=[[0o31, 0o27, 0o00], [0o00, 0o12, 0o15]],
... )
>>> code.constraint_lengths
array([4, 3])

overall_constraint_length int cached property

The overall constraint length ν\nu of the code.

Examples:

>>> code = komm.ConvolutionalCode(
...     feedforward_polynomials=[[0o31, 0o27, 0o00], [0o00, 0o12, 0o15]],
... )
>>> code.overall_constraint_length
7

memory_order int cached property

The memory order μ\mu of the code.

Examples:

>>> code = komm.ConvolutionalCode(
...     feedforward_polynomials=[[0o31, 0o27, 0o00], [0o00, 0o12, 0o15]],
... )
>>> code.memory_order
4

finite_state_machine() cached

Returns the finite-state machine of the code, in direct form.

Returns:

  • FiniteStateMachine

    The finite-state machine of the code.

Examples:

>>> code = komm.ConvolutionalCode(feedforward_polynomials=[[0b101, 0b111]])
>>> code.finite_state_machine()
FiniteStateMachine(next_states=[[0, 1], [2, 3], [0, 1], [2, 3]],
                   outputs=[[0, 3], [2, 1], [3, 0], [1, 2]])

state_space_representation() cached

Returns the state-space representation of the code. Let ut=(ut(0),ut(1),,ut(k1)),vt=(vt(0),vt(1),,vt(n1)),st=(st(0),st(1),,st(ν1)), \begin{aligned} \mathbf{u}_t & = (u_t^{(0)}, u_t^{(1)}, \ldots, u_t^{(k-1)}), \\ \mathbf{v}_t & = (v_t^{(0)}, v_t^{(1)}, \ldots, v_t^{(n-1)}), \\ \mathbf{s}_t & = (s_t^{(0)}, s_t^{(1)}, \ldots, s_t^{(\nu-1)}), \end{aligned} be the input block, output block, and state, respectively, all defined at time instant tt. Then, st+1=stA+utB,vt=stC+utD, \begin{aligned} \mathbf{s}_{t+1} & = \mathbf{s}_t \mathbf{A} + \mathbf{u}_t \mathbf{B}, \\ \mathbf{v}_{t} & = \mathbf{s}_t \mathbf{C} + \mathbf{u}_t \mathbf{D}, \end{aligned} where A\mathbf{A} is the ν×ν\nu \times \nu state matrix, B\mathbf{B} is the k×νk \times \nu control matrix, C\mathbf{C} is the ν×n\nu \times n observation matrix, and D\mathbf{D} is the k×nk \times n transition matrix. They are all binary matrices. For more details, see WBR01.

Returns:

  • NDArray[integer]

    The state matrix A\mathbf{A} of the code.

  • NDArray[integer]

    The control matrix B\mathbf{B} of the code.

  • NDArray[integer]

    The observation matrix C\mathbf{C} of the code.

  • NDArray[integer]

    The transition matrix D\mathbf{D} of the code.

Examples:

>>> code = komm.ConvolutionalCode(feedforward_polynomials=[[0b101, 0b111]])
>>> state_matrix, control_matrix, observation_matrix, transition_matrix = (
...     code.state_space_representation()
... )
>>> state_matrix
array([[0, 1],
       [0, 0]])
>>> control_matrix
array([[1, 0]])
>>> observation_matrix
array([[0, 1],
       [1, 1]])
>>> transition_matrix
array([[1, 1]])